Number of solutions to the system of equations $sin \frac{x+y}{2}=0$ and $|x| + |y| = 1$

  • A

    $2$

  • B

    $3$

  • C

    $4$

  • D

    $6$

Similar Questions

The total number of solution of $sin^4x + cos^4x = sinx\, cosx$ in $[0, 2\pi ]$ is equal to

Let $f:[0,2] \rightarrow R$ be the function defined by

$f ( x )=(3-\sin (2 \pi x )) \sin \left(\pi x -\frac{\pi}{4}\right)-\sin \left(3 \pi x +\frac{\pi}{4}\right)$

If $\alpha, \beta \in[0,2]$ are such that $\{x \in[0,2]: f(x) \geq 0\}=[\alpha, \beta]$, then the value of $\beta-\alpha$ is. . . . . . . . . 

  • [IIT 2020]

If ${\sin ^2}\theta = \frac{1}{4},$ then the most general value of $\theta $ is

The number of values of $x$ for which $sin\,\, 2x + cos\,\, 4x = 2$ is

If $\sin (A + B) =1 $ and $\cos (A - B) = \frac{{\sqrt 3 }}{2},$ then the smallest positive values of $A$ and $ B$ are