Number of solutions to the system of equations $sin \frac{x+y}{2}=0$ and $|x| + |y| = 1$
$2$
$3$
$4$
$6$
The total number of solution of $sin^4x + cos^4x = sinx\, cosx$ in $[0, 2\pi ]$ is equal to
Let $f:[0,2] \rightarrow R$ be the function defined by
$f ( x )=(3-\sin (2 \pi x )) \sin \left(\pi x -\frac{\pi}{4}\right)-\sin \left(3 \pi x +\frac{\pi}{4}\right)$
If $\alpha, \beta \in[0,2]$ are such that $\{x \in[0,2]: f(x) \geq 0\}=[\alpha, \beta]$, then the value of $\beta-\alpha$ is. . . . . . . . .
If ${\sin ^2}\theta = \frac{1}{4},$ then the most general value of $\theta $ is
The number of values of $x$ for which $sin\,\, 2x + cos\,\, 4x = 2$ is
If $\sin (A + B) =1 $ and $\cos (A - B) = \frac{{\sqrt 3 }}{2},$ then the smallest positive values of $A$ and $ B$ are